Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Faster Approximate Distance Queries and Compact Routing in Sparse Graphs (1201.2703v1)

Published 12 Jan 2012 in cs.DS, cs.DC, cs.NI, and cs.SI

Abstract: A distance oracle is a compact representation of the shortest distance matrix of a graph. It can be queried to approximate shortest paths between any pair of vertices. Any distance oracle that returns paths of worst-case stretch (2k-1) must require space $\Omega(n{1 + 1/k})$ for graphs of n nodes. The hard cases that enforce this lower bound are, however, rather dense graphs with average degree \Omega(n{1/k}). We present distance oracles that, for sparse graphs, substantially break the lower bound barrier at the expense of higher query time. For any 1 \leq \alpha \leq n, our distance oracles can return stretch 2 paths using O(m + n2/\alpha) space and stretch 3 paths using O(m + n2/\alpha2) space, at the expense of O(\alpha m/n) query time. By setting appropriate values of \alpha, we get the first distance oracles that have size linear in the size of the graph, and return constant stretch paths in non-trivial query time. The query time can be further reduced to O(\alpha), by using an additional O(m \alpha) space for all our distance oracles, or at the cost of a small constant additive stretch. We use our stretch 2 distance oracle to present the first compact routing scheme with worst-case stretch 2. Any compact routing scheme with stretch less than 2 must require linear memory at some nodes even for sparse graphs; our scheme, hence, achieves the optimal stretch with non-trivial memory requirements. Moreover, supported by large-scale simulations on graphs including the AS-level Internet graph, we argue that our stretch-2 scheme would be simple and efficient to implement as a distributed compact routing protocol.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.