Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Hyperbolicity of Small-World and Tree-Like Random Graphs (1201.1717v3)

Published 9 Jan 2012 in cs.SI, cs.DM, and physics.soc-ph

Abstract: Hyperbolicity is a property of a graph that may be viewed as being a "soft" version of a tree, and recent empirical and theoretical work has suggested that many graphs arising in Internet and related data applications have hyperbolic properties. We consider Gromov's notion of \delta-hyperbolicity, and establish several results for small-world and tree-like random graph models. First, we study the hyperbolicity of Kleinberg small-world random graphs and show that the hyperbolicity of these random graphs is not significantly improved comparing to graph diameter even when it greatly improves decentralized navigation. Next we study a class of tree-like graphs called ringed trees that have constant hyperbolicity. We show that adding random links among the leaves similar to the small-world graph constructions may easily destroy the hyperbolicity of the graphs, except for a class of random edges added using an exponentially decaying probability function based on the ring distance among the leaves. Our study provides one of the first significant analytical results on the hyperbolicity of a rich class of random graphs, which shed light on the relationship between hyperbolicity and navigability of random graphs, as well as on the sensitivity of hyperbolic {\delta} to noises in random graphs.

Citations (90)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.