A graph theoretical Poincare-Hopf Theorem (1201.1162v1)
Abstract: We introduce the index i(v) = 1 - X(S(v)) for critical points of a locally injective function f on the vertex set V of a simple graph G=(V,E). Here S(v) = {w in E | (v,w) in E, f(w)-f(v)<0} is the subgraph of the unit sphere at v in G. It is the exit set of the gradient vector field. We prove that the sum of i(v) over V is always is equal to the Euler characteristic X(G) of the graph G. This is a discrete Poincare-Hopf theorem in a discrete Morse setting. It allows to compute X(G) for large graphs for which other methods become impractical.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.