Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Network Coding Capacity Regions via Entropy Functions (1201.1062v1)

Published 5 Jan 2012 in cs.IT and math.IT

Abstract: In this paper, we use entropy functions to characterise the set of rate-capacity tuples achievable with either zero decoding error, or vanishing decoding error, for general network coding problems. We show that when sources are colocated, the outer bound obtained by Yeung, A First Course in Information Theory, Section 15.5 (2002) is tight and the sets of zero-error achievable and vanishing-error achievable rate-capacity tuples are the same. We also characterise the set of zero-error and vanishing-error achievable rate capacity tuples for network coding problems subject to linear encoding constraints, routing constraints (where some or all nodes can only perform routing) and secrecy constraints. Finally, we show that even for apparently simple networks, design of optimal codes may be difficult. In particular, we prove that for the incremental multicast problem and for the single-source secure network coding problem, characterisation of the achievable set is very hard and linear network codes may not be optimal.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube