Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Communities and bottlenecks: Trees and treelike networks have high modularity (1201.0745v2)

Published 3 Jan 2012 in physics.soc-ph, cs.SI, and physics.data-an

Abstract: Much effort has gone into understanding the modular nature of complex networks. Communities, also known as clusters or modules, are typically considered to be densely interconnected groups of nodes that are only sparsely connected to other groups in the network. Discovering high quality communities is a difficult and important problem in a number of areas. The most popular approach is the objective function known as modularity, used both to discover communities and to measure their strength. To understand the modular structure of networks it is then crucial to know how such functions evaluate different topologies, what features they account for, and what implicit assumptions they may make. We show that trees and treelike networks can have unexpectedly and often arbitrarily high values of modularity. This is surprising since trees are maximally sparse connected graphs and are not typically considered to possess modular structure, yet the nonlocal null model used by modularity assigns low probabilities, and thus high significance, to the densities of these sparse tree communities. We further study the practical performance of popular methods on model trees and on a genealogical data set and find that the discovered communities also have very high modularity, often approaching its maximum value. Statistical tests reveal the communities in trees to be significant, in contrast with known results for partitions of sparse, random graphs.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube