Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Noise vs computational intractability in dynamics (1201.0488v1)

Published 2 Jan 2012 in cs.CC, math.DS, and nlin.CD

Abstract: Computation plays a key role in predicting and analyzing natural phenomena. There are two fundamental barriers to our ability to computationally understand the long-term behavior of a dynamical system that describes a natural process. The first one is unaccounted-for errors, which may make the system unpredictable beyond a very limited time horizon. This is especially true for chaotic systems, where a small change in the initial conditions may cause a dramatic shift in the trajectories. The second one is Turing-completeness. By the undecidability of the Halting Problem, the long-term prospects of a system that can simulate a Turing Machine cannot be determined computationally. We investigate the interplay between these two forces -- unaccounted-for errors and Turing-completeness. We show that the introduction of even a small amount of noise into a dynamical system is sufficient to "destroy" Turing-completeness, and to make the system's long-term behavior computationally predictable. On a more technical level, we deal with long-term statistical properties of dynamical systems, as described by invariant measures. We show that while there are simple dynamical systems for which the invariant measures are non-computable, perturbing such systems makes the invariant measures efficiently computable. Thus, noise that makes the short term behavior of the system harder to predict, may make its long term statistical behavior computationally tractable. We also obtain some insight into the computational complexity of predicting systems affected by random noise.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.