Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Estimation And Selection Via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications (1112.6363v1)

Published 29 Dec 2011 in stat.ML, math.ST, and stat.TH

Abstract: The $\ell_1$-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted $\ell_1$-penalized estimators for convex loss functions of a general form, including the generalized linear models. We study the estimation, prediction, selection and sparsity properties of the weighted $\ell_1$-penalized estimator in sparse, high-dimensional settings where the number of predictors $p$ can be much larger than the sample size $n$. Adaptive Lasso is considered as a special case. A multistage method is developed to apply an adaptive Lasso recursively. We provide $\ell_q$ oracle inequalities, a general selection consistency theorem, and an upper bound on the dimension of the Lasso estimator. Important models including the linear regression, logistic regression and log-linear models are used throughout to illustrate the applications of the general results.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.