Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

On the Dimension and Euler characteristic of random graphs (1112.5749v1)

Published 24 Dec 2011 in math.PR, cs.CG, cs.DM, cs.NI, and math.CO

Abstract: The inductive dimension dim(G) of a finite undirected graph G=(V,E) is a rational number defined inductively as 1 plus the arithmetic mean of the dimensions of the unit spheres dim(S(x)) at vertices x primed by the requirement that the empty graph has dimension -1. We look at the distribution of the random variable "dim" on the Erdos-Renyi probability space G(n,p), where each of the n(n-1)/2 edges appears independently with probability p. We show here that the average dimension E[dim] is a computable polynomial of degree n(n-1)/2 in p. The explicit formulas allow experimentally to explore limiting laws for the dimension of large graphs. We also study the expectation E[X] of the Euler characteristic X, considered as a random variable on G(n,p). We look experimentally at the statistics of curvature K(v) and local dimension dim(v) = 1+dim(S(v)) which satisfy the Gauss-Bonnet formula X(G) = sum K(v) and by definition dim(G) = sum dim(v)/|V|. We also look at the signature functions f(p)=E[dim], g(p)=E[X] and matrix values functions A(p) = Cov[{dim(v),dim(w)], B(p) = Cov[K(v),K(w)] on the probability space G(p) of all subgraphs of a host graph G=(V,E) with the same vertex set V, where each edge is turned on with probability p. If G is the complete graph or a union of cyclic graphs with have explicit formulas for the signature polynomials f and g.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com