Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Testing $k$-Modal Distributions: Optimal Algorithms via Reductions (1112.5659v1)

Published 23 Dec 2011 in cs.DS, math.PR, math.ST, and stat.TH

Abstract: We give highly efficient algorithms, and almost matching lower bounds, for a range of basic statistical problems that involve testing and estimating the L_1 distance between two k-modal distributions $p$ and $q$ over the discrete domain ${1,\dots,n}$. More precisely, we consider the following four problems: given sample access to an unknown k-modal distribution $p$, Testing identity to a known or unknown distribution: 1. Determine whether $p = q$ (for an explicitly given k-modal distribution $q$) versus $p$ is $\eps$-far from $q$; 2. Determine whether $p=q$ (where $q$ is available via sample access) versus $p$ is $\eps$-far from $q$; Estimating $L_1$ distance ("tolerant testing'') against a known or unknown distribution: 3. Approximate $d_{TV}(p,q)$ to within additive $\eps$ where $q$ is an explicitly given k-modal distribution $q$; 4. Approximate $d_{TV}(p,q)$ to within additive $\eps$ where $q$ is available via sample access. For each of these four problems we give sub-logarithmic sample algorithms, that we show are tight up to additive $\poly(k)$ and multiplicative $\polylog\log n+\polylog k$ factors. Thus our bounds significantly improve the previous results of \cite{BKR:04}, which were for testing identity of distributions (items (1) and (2) above) in the special cases k=0 (monotone distributions) and k=1 (unimodal distributions) and required $O((\log n)3)$ samples. As our main conceptual contribution, we introduce a new reduction-based approach for distribution-testing problems that lets us obtain all the above results in a unified way. Roughly speaking, this approach enables us to transform various distribution testing problems for k-modal distributions over ${1,\dots,n}$ to the corresponding distribution testing problems for unrestricted distributions over a much smaller domain ${1,\dots,\ell}$ where $\ell = O(k \log n).$

Citations (80)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.