Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Zero-Temperature Limit of a Convergent Algorithm to Minimize the Bethe Free Energy (1112.5298v1)

Published 22 Dec 2011 in cs.CV

Abstract: After the discovery that fixed points of loopy belief propagation coincide with stationary points of the Bethe free energy, several researchers proposed provably convergent algorithms to directly minimize the Bethe free energy. These algorithms were formulated only for non-zero temperature (thus finding fixed points of the sum-product algorithm) and their possible extension to zero temperature is not obvious. We present the zero-temperature limit of the double-loop algorithm by Heskes, which converges a max-product fixed point. The inner loop of this algorithm is max-sum diffusion. Under certain conditions, the algorithm combines the complementary advantages of the max-product belief propagation and max-sum diffusion (LP relaxation): it yields good approximation of both ground states and max-marginals.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)