Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tight Bounds for Distributed Functional Monitoring (1112.5153v3)

Published 21 Dec 2011 in cs.DS

Abstract: We resolve several fundamental questions in the area of distributed functional monitoring, initiated by Cormode, Muthukrishnan, and Yi (SODA, 2008). In this model there are $k$ sites each tracking their input and communicating with a central coordinator that continuously maintain an approximate output to a function $f$ computed over the union of the inputs. The goal is to minimize the communication. We show the randomized communication complexity of estimating the number of distinct elements up to a $1+\eps$ factor is $\tilde{\Omega}(k/\eps2)$, improving the previous $\Omega(k + 1/\eps2)$ bound and matching known upper bounds up to a logarithmic factor. For the $p$-th frequency moment $F_p$, $p > 1$, we improve the previous $\Omega(k + 1/\eps2)$ communication bound to $\tilde{\Omega}(k{p-1}/\eps2)$. We obtain similar improvements for heavy hitters, empirical entropy, and other problems. We also show that we can estimate $F_p$, for any $p > 1$, using $\tilde{O}(k{p-1}\poly(\eps{-1}))$ communication. This greatly improves upon the previous $\tilde{O}(k{2p+1}N{1-2/p} \poly(\eps{-1}))$ bound of Cormode, Muthukrishnan, and Yi for general $p$, and their $\tilde{O}(k2/\eps + k{1.5}/\eps3)$ bound for $p = 2$. For $p = 2$, our bound resolves their main open question. Our lower bounds are based on new direct sum theorems for approximate majority, and yield significant improvements to problems in the data stream model, improving the bound for estimating $F_p, p > 2,$ in $t$ passes from $\tilde{\Omega}(n{1-2/p}/(\eps{2/p} t))$ to $\tilde{\Omega}(n{1-2/p}/(\eps{4/p} t))$, giving the first bound for estimating $F_0$ in $t$ passes of $\Omega(1/(\eps2 t))$ bits of space that does not use the gap-hamming problem.

Citations (107)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube