Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Using Artificial Bee Colony Algorithm for MLP Training on Earthquake Time Series Data Prediction (1112.4628v1)

Published 20 Dec 2011 in cs.NE, cs.AI, and cs.LG

Abstract: Nowadays, computer scientists have shown the interest in the study of social insect's behaviour in neural networks area for solving different combinatorial and statistical problems. Chief among these is the Artificial Bee Colony (ABC) algorithm. This paper investigates the use of ABC algorithm that simulates the intelligent foraging behaviour of a honey bee swarm. Multilayer Perceptron (MLP) trained with the standard back propagation algorithm normally utilises computationally intensive training algorithms. One of the crucial problems with the backpropagation (BP) algorithm is that it can sometimes yield the networks with suboptimal weights because of the presence of many local optima in the solution space. To overcome ABC algorithm used in this work to train MLP learning the complex behaviour of earthquake time series data trained by BP, the performance of MLP-ABC is benchmarked against MLP training with the standard BP. The experimental result shows that MLP-ABC performance is better than MLP-BP for time series data.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.