Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating the Edge Length of 2-Edge Connected Planar Geometric Graphs on a Set of Points (1112.3523v1)

Published 15 Dec 2011 in cs.DM and cs.CG

Abstract: Given a set $P$ of $n$ points in the plane, we solve the problems of constructing a geometric planar graph spanning $P$ 1) of minimum degree 2, and 2) which is 2-edge connected, respectively, and has max edge length bounded by a factor of 2 times the optimal; we also show that the factor 2 is best possible given appropriate connectivity conditions on the set $P$, respectively. First, we construct in $O(n\log{n})$ time a geometric planar graph of minimum degree 2 and max edge length bounded by 2 times the optimal. This is then used to construct in $O(n\log n)$ time a 2-edge connected geometric planar graph spanning $P$ with max edge length bounded by $\sqrt{5}$ times the optimal, assuming that the set $P$ forms a connected Unit Disk Graph. Second, we prove that 2 times the optimal is always sufficient if the set of points forms a 2 edge connected Unit Disk Graph and give an algorithm that runs in $O(n2)$ time. We also show that for $k \in O(\sqrt{n})$, there exists a set $P$ of $n$ points in the plane such that even though the Unit Disk Graph spanning $P$ is $k$-vertex connected, there is no 2-edge connected geometric planar graph spanning $P$ even if the length of its edges is allowed to be up to 17/16.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Stefan Dobrev (4 papers)
  2. Evangelos Kranakis (44 papers)
  3. Danny Krizanc (26 papers)
  4. Oscar Morales-Ponce (12 papers)
  5. Ladislav Stacho (20 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.