Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Tractability Aspects of Optimal Resource Allocation in OFDMA Systems (1112.2372v1)

Published 11 Dec 2011 in cs.NI, cs.IT, and math.IT

Abstract: Joint channel and rate allocation with power minimization in orthogonal frequency-division multiple access (OFDMA) has attracted extensive attention. Most of the research has dealt with the development of sub-optimal but low-complexity algorithms. In this paper, the contributions comprise new insights from revisiting tractability aspects of computing optimum. Previous complexity analyses have been limited by assumptions of fixed power on each subcarrier, or power-rate functions that locally grow arbitrarily fast. The analysis under the former assumption does not generalize to problem tractability with variable power, whereas the latter assumption prohibits the result from being applicable to well-behaved power-rate functions. As the first contribution, we overcome the previous limitations by rigorously proving the problem's NP-hardness for the representative logarithmic rate function. Next, we extend the proof to reach a much stronger result, namely that the problem remains NP-hard, even if the channels allocated to each user is restricted to a consecutive block with given size. We also prove that, under these restrictions, there is a special case with polynomial-time tractability. Then, we treat the problem class where the channels can be partitioned into an arbitrarily large but constant number of groups, each having uniform gain for every individual user. For this problem class, we present a polynomial-time algorithm and prove optimality guarantee. In addition, we prove that the recognition of this class is polynomial-time solvable.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.