Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimal Merging Algorithms for Lossless Codes with Generalized Criteria (1112.1715v2)

Published 7 Dec 2011 in cs.IT and math.IT

Abstract: This paper presents lossless prefix codes optimized with respect to a pay-off criterion consisting of a convex combination of maximum codeword length and average codeword length. The optimal codeword lengths obtained are based on a new coding algorithm which transforms the initial source probability vector into a new probability vector according to a merging rule. The coding algorithm is equivalent to a partition of the source alphabet into disjoint sets on which a new transformed probability vector is defined as a function of the initial source probability vector and a scalar parameter. The pay-off criterion considered encompasses a trade-off between maximum and average codeword length; it is related to a pay-off criterion consisting of a convex combination of average codeword length and average of an exponential function of the codeword length, and to an average codeword length pay-off criterion subject to a limited length constraint. A special case of the first related pay-off is connected to coding problems involving source probability uncertainty and codeword overflow probability, while the second related pay-off compliments limited length Huffman coding algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.