Finding Heavy Paths in Graphs: A Rank Join Approach (1112.1117v2)
Abstract: Graphs have been commonly used to model many applications. A natural problem which abstracts applications such as itinerary planning, playlist recommendation, and flow analysis in information networks is that of finding the heaviest path(s) in a graph. More precisely, we can model these applications as a graph with non-negative edge weights, along with a monotone function such as sum, which aggregates edge weights into a path weight, capturing some notion of quality. We are then interested in finding the top-k heaviest simple paths, i.e., the $k$ simple (cycle-free) paths with the greatest weight, whose length equals a given parameter $\ell$. We call this the \emph{Heavy Path Problem} (HPP). It is easy to show that the problem is NP-Hard. In this work, we develop a practical approach to solve the Heavy Path problem by leveraging a strong connection with the well-known Rank Join paradigm. We first present an algorithm by adapting the Rank Join algorithm. We identify its limitations and develop a new exact algorithm called HeavyPath and a scalable heuristic algorithm. We conduct a comprehensive set of experiments on three real data sets and show that HeavyPath outperforms the baseline algorithms significantly, with respect to both $\ell$ and $k$. Further, our heuristic algorithm scales to longer lengths, finding paths that are empirically within 50% of the optimum solution or better under various settings, and takes only a fraction of the running time compared to the exact algorithm.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.