Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Clustering under Perturbation Resilience (1112.0826v5)

Published 5 Dec 2011 in cs.LG and cs.DS

Abstract: Motivated by the fact that distances between data points in many real-world clustering instances are often based on heuristic measures, Bilu and Linial~\cite{BL} proposed analyzing objective based clustering problems under the assumption that the optimum clustering to the objective is preserved under small multiplicative perturbations to distances between points. The hope is that by exploiting the structure in such instances, one can overcome worst case hardness results. In this paper, we provide several results within this framework. For center-based objectives, we present an algorithm that can optimally cluster instances resilient to perturbations of factor $(1 + \sqrt{2})$, solving an open problem of Awasthi et al.~\cite{ABS10}. For $k$-median, a center-based objective of special interest, we additionally give algorithms for a more relaxed assumption in which we allow the optimal solution to change in a small $\epsilon$ fraction of the points after perturbation. We give the first bounds known for $k$-median under this more realistic and more general assumption. We also provide positive results for min-sum clustering which is typically a harder objective than center-based objectives from approximability standpoint. Our algorithms are based on new linkage criteria that may be of independent interest. Additionally, we give sublinear-time algorithms, showing algorithms that can return an implicit clustering from only access to a small random sample.

Citations (87)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube