Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust Lasso with missing and grossly corrupted observations (1112.0391v2)

Published 2 Dec 2011 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: This paper studies the problem of accurately recovering a sparse vector $\beta{\star}$ from highly corrupted linear measurements $y = X \beta{\star} + e{\star} + w$ where $e{\star}$ is a sparse error vector whose nonzero entries may be unbounded and $w$ is a bounded noise. We propose a so-called extended Lasso optimization which takes into consideration sparse prior information of both $\beta{\star}$ and $e{\star}$. Our first result shows that the extended Lasso can faithfully recover both the regression as well as the corruption vector. Our analysis relies on the notion of extended restricted eigenvalue for the design matrix $X$. Our second set of results applies to a general class of Gaussian design matrix $X$ with i.i.d rows $\oper N(0, \Sigma)$, for which we can establish a surprising result: the extended Lasso can recover exact signed supports of both $\beta{\star}$ and $e{\star}$ from only $\Omega(k \log p \log n)$ observations, even when the fraction of corruption is arbitrarily close to one. Our analysis also shows that this amount of observations required to achieve exact signed support is indeed optimal.

Citations (152)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube