Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neighborhoods are good communities (1112.0031v1)

Published 30 Nov 2011 in cs.SI, cs.DM, cs.DS, and physics.soc-ph

Abstract: The communities of a social network are sets of vertices with more connections inside the set than outside. We theoretically demonstrate that two commonly observed properties of social networks, heavy-tailed degree distributions and large clustering coefficients, imply the existence of vertex neighborhoods (also known as egonets) that are themselves good communities. We evaluate these neighborhood communities on a range of graphs. What we find is that the neighborhood communities often exhibit conductance scores that are as good as the Fiedler cut. Also, the conductance of neighborhood communities shows similar behavior as the network community profile computed with a personalized PageRank community detection method. The latter requires sweeping over a great many starting vertices, which can be expensive. By using a small and easy-to-compute set of neighborhood communities as seeds for these PageRank communities, however, we find communities that precisely capture the behavior of the network community profile when seeded everywhere in the graph, and at a significant reduction in total work.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. David Gleich (11 papers)
  2. C. Seshadhri (89 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.