Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Invariant texture analysis through Local Binary Patterns (1111.7271v1)

Published 30 Nov 2011 in cs.CV

Abstract: In many image processing applications, such as segmentation and classification, the selection of robust features descriptors is crucial to improve the discrimination capabilities in real world scenarios. In particular, it is well known that image textures constitute power visual cues for feature extraction and classification. In the past few years the local binary pattern (LBP) approach, a texture descriptor method proposed by Ojala et al., has gained increased acceptance due to its computational simplicity and more importantly for encoding a powerful signature for describing textures. However, the original algorithm presents some limitations such as noise sensitivity and its lack of rotational invariance which have led to many proposals or extensions in order to overcome such limitations. In this paper we performed a quantitative study of the Ojala's original LBP proposal together with other recently proposed LBP extensions in the presence of rotational, illumination and noisy changes. In the experiments we have considered two different databases: Brodatz and CUReT for different sizes of LBP masks. Experimental results demonstrated the effectiveness and robustness of the described texture descriptors for images that are subjected to geometric or radiometric changes.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.