Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Indexing the Earth Mover's Distance Using Normal Distributions (1111.7168v1)

Published 30 Nov 2011 in cs.DB

Abstract: Querying uncertain data sets (represented as probability distributions) presents many challenges due to the large amount of data involved and the difficulties comparing uncertainty between distributions. The Earth Mover's Distance (EMD) has increasingly been employed to compare uncertain data due to its ability to effectively capture the differences between two distributions. Computing the EMD entails finding a solution to the transportation problem, which is computationally intensive. In this paper, we propose a new lower bound to the EMD and an index structure to significantly improve the performance of EMD based K-nearest neighbor (K-NN) queries on uncertain databases. We propose a new lower bound to the EMD that approximates the EMD on a projection vector. Each distribution is projected onto a vector and approximated by a normal distribution, as well as an accompanying error term. We then represent each normal as a point in a Hough transformed space. We then use the concept of stochastic dominance to implement an efficient index structure in the transformed space. We show that our method significantly decreases K-NN query time on uncertain databases. The index structure also scales well with database cardinality. It is well suited for heterogeneous data sets, helping to keep EMD based queries tractable as uncertain data sets become larger and more complex.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube