Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Rule based Part of speech Tagger for Homoeopathy Clinical realm (1111.5293v1)

Published 13 Nov 2011 in cs.CL

Abstract: A tagger is a mandatory segment of most text scrutiny systems, as it consigned a s yntax class (e.g., noun, verb, adjective, and adverb) to every word in a sentence. In this paper, we present a simple part of speech tagger for homoeopathy clinical language. This paper reports about the anticipated part of speech tagger for homoeopathy clinical language. It exploit standard pattern for evaluating sentences, untagged clinical corpus of 20085 words is used, from which we had selected 125 sentences (2322 tokens). The problem of tagging in natural language processing is to find a way to tag every word in a text as a meticulous part of speech. The basic idea is to apply a set of rules on clinical sentences and on each word, Accuracy is the leading factor in evaluating any POS tagger so the accuracy of proposed tagger is also conversed.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.