Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient Capacity Computation and Power Optimization for Relay Networks (1111.4244v1)

Published 18 Nov 2011 in cs.IT and math.IT

Abstract: The capacity or approximations to capacity of various single-source single-destination relay network models has been characterized in terms of the cut-set upper bound. In principle, a direct computation of this bound requires evaluating the cut capacity over exponentially many cuts. We show that the minimum cut capacity of a relay network under some special assumptions can be cast as a minimization of a submodular function, and as a result, can be computed efficiently. We use this result to show that the capacity, or an approximation to the capacity within a constant gap for the Gaussian, wireless erasure, and Avestimehr-Diggavi-Tse deterministic relay network models can be computed in polynomial time. We present some empirical results showing that computing constant-gap approximations to the capacity of Gaussian relay networks with around 300 nodes can be done in order of minutes. For Gaussian networks, cut-set capacities are also functions of the powers assigned to the nodes. We consider a family of power optimization problems and show that they can be solved in polynomial time. In particular, we show that the minimization of the sum of powers assigned to the nodes subject to a minimum rate constraint (measured in terms of cut-set bounds) can be computed in polynomial time. We propose an heuristic algorithm to solve this problem and measure its performance through simulations on random Gaussian networks. We observe that in the optimal allocations most of the power is assigned to a small subset of relays, which suggests that network simplification may be possible without excessive performance degradation.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube