Emergent Mind

Abstract

In this paper, we give a new generalization error bound of Multiple Kernel Learning (MKL) for a general class of regularizations, and discuss what kind of regularization gives a favorable predictive accuracy. Our main target in this paper is dense type regularizations including \ellp-MKL. According to the recent numerical experiments, the sparse regularization does not necessarily show a good performance compared with dense type regularizations. Motivated by this fact, this paper gives a general theoretical tool to derive fast learning rates of MKL that is applicable to arbitrary mixed-norm-type regularizations in a unifying manner. This enables us to compare the generalization performances of various types of regularizations. As a consequence, we observe that the homogeneity of the complexities of candidate reproducing kernel Hilbert spaces (RKHSs) affects which regularization strategy (\ell1 or dense) is preferred. In fact, in homogeneous complexity settings where the complexities of all RKHSs are evenly same, \ell1-regularization is optimal among all isotropic norms. On the other hand, in inhomogeneous complexity settings, dense type regularizations can show better learning rate than sparse \ell1-regularization. We also show that our learning rate achieves the minimax lower bound in homogeneous complexity settings.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.