Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An improved lower bound for (1,<=2)-identifying codes in the king grid (1111.2477v1)

Published 10 Nov 2011 in math.CO and cs.DM

Abstract: We call a subset $C$ of vertices of a graph $G$ a $(1,\leq \ell)$-identifying code if for all subsets $X$ of vertices with size at most $\ell$, the sets ${c\in C |\exists u \in X, d(u,c)\leq 1}$ are distinct. The concept of identifying codes was introduced in 1998 by Karpovsky, Chakrabarty and Levitin. Identifying codes have been studied in various grids. In particular, it has been shown that there exists a $(1,\leq 2)$-identifying code in the king grid with density 3/7 and that there are no such identifying codes with density smaller than 5/12. Using a suitable frame and a discharging procedure, we improve the lower bound by showing that any $(1,\leq 2)$-identifying code of the king grid has density at least 47/111.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.