Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Semantic Grounding Strategies for Tagbased Recommender Systems (1111.1570v1)

Published 7 Nov 2011 in cs.IR and cs.SI

Abstract: Recommender systems usually operate on similarities between recommended items or users. Tag based recommender systems utilize similarities on tags. The tags are however mostly free user entered phrases. Therefore, similarities computed without their semantic groundings might lead to less relevant recommendations. In this paper, we study a semantic grounding used for tag similarity calculus. We show a comprehensive analysis of semantic grounding given by 20 ontologies from different domains. The study besides other things reveals that currently available OWL ontologies are very narrow and the percentage of the similarity expansions is rather small. WordNet scores slightly better as it is broader but not much as it does not support several semantic relationships. Furthermore, the study reveals that even with such number of expansions, the recommendations change considerably.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.