Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stochastic Belief Propagation: A Low-Complexity Alternative to the Sum-Product Algorithm (1111.1020v2)

Published 4 Nov 2011 in cs.IT, math.IT, and stat.ML

Abstract: The sum-product or belief propagation (BP) algorithm is a widely-used message-passing algorithm for computing marginal distributions in graphical models with discrete variables. At the core of the BP message updates, when applied to a graphical model with pairwise interactions, lies a matrix-vector product with complexity that is quadratic in the state dimension $d$, and requires transmission of a $(d-1)$-dimensional vector of real numbers (messages) to its neighbors. Since various applications involve very large state dimensions, such computation and communication complexities can be prohibitively complex. In this paper, we propose a low-complexity variant of BP, referred to as stochastic belief propagation (SBP). As suggested by the name, it is an adaptively randomized version of the BP message updates in which each node passes randomly chosen information to each of its neighbors. The SBP message updates reduce the computational complexity (per iteration) from quadratic to linear in $d$, without assuming any particular structure of the potentials, and also reduce the communication complexity significantly, requiring only $\log{d}$ bits transmission per edge. Moreover, we establish a number of theoretical guarantees for the performance of SBP, showing that it converges almost surely to the BP fixed point for any tree-structured graph, and for graphs with cycles satisfying a contractivity condition. In addition, for these graphical models, we provide non-asymptotic upper bounds on the convergence rate, showing that the $\ell_{\infty}$ norm of the error vector decays no slower than $O(1/\sqrt{t})$ with the number of iterations $t$ on trees and the mean square error decays as $O(1/t)$ for general graphs. These analysis show that SBP can provably yield reductions in computational and communication complexities for various classes of graphical models.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.