Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 152 tok/s Pro
GPT OSS 120B 325 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Controlling False Positives in Association Rule Mining (1110.6652v1)

Published 30 Oct 2011 in cs.DB

Abstract: Association rule mining is an important problem in the data mining area. It enumerates and tests a large number of rules on a dataset and outputs rules that satisfy user-specified constraints. Due to the large number of rules being tested, rules that do not represent real systematic effect in the data can satisfy the given constraints purely by random chance. Hence association rule mining often suffers from a high risk of false positive errors. There is a lack of comprehensive study on controlling false positives in association rule mining. In this paper, we adopt three multiple testing correction approaches---the direct adjustment approach, the permutation-based approach and the holdout approach---to control false positives in association rule mining, and conduct extensive experiments to study their performance. Our results show that (1) Numerous spurious rules are generated if no correction is made. (2) The three approaches can control false positives effectively. Among the three approaches, the permutation-based approach has the highest power of detecting real association rules, but it is very computationally expensive. We employ several techniques to reduce its cost effectively.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube