Papers
Topics
Authors
Recent
2000 character limit reached

Structural Similarity and Distance in Learning (1110.5847v1)

Published 26 Oct 2011 in stat.ML

Abstract: We propose a novel method of introducing structure into existing machine learning techniques by developing structure-based similarity and distance measures. To learn structural information, low-dimensional structure of the data is captured by solving a non-linear, low-rank representation problem. We show that this low-rank representation can be kernelized, has a closed-form solution, allows for separation of independent manifolds, and is robust to noise. From this representation, similarity between observations based on non-linear structure is computed and can be incorporated into existing feature transformations, dimensionality reduction techniques, and machine learning methods. Experimental results on both synthetic and real data sets show performance improvements for clustering, and anomaly detection through the use of structural similarity.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.