Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Discussion on "Techniques for Massive-Data Machine Learning in Astronomy" by A. Gray (1110.5688v1)

Published 26 Oct 2011 in astro-ph.IM, astro-ph.CO, and cs.LG

Abstract: Astronomy is increasingly encountering two fundamental truths: (1) The field is faced with the task of extracting useful information from extremely large, complex, and high dimensional datasets; (2) The techniques of astroinformatics and astrostatistics are the only way to make this tractable, and bring the required level of sophistication to the analysis. Thus, an approach which provides these tools in a way that scales to these datasets is not just desirable, it is vital. The expertise required spans not just astronomy, but also computer science, statistics, and informatics. As a computer scientist and expert in machine learning, Alex's contribution of expertise and a large number of fast algorithms designed to scale to large datasets, is extremely welcome. We focus in this discussion on the questions raised by the practical application of these algorithms to real astronomical datasets. That is, what is needed to maximally leverage their potential to improve the science return? This is not a trivial task. While computing and statistical expertise are required, so is astronomical expertise. Precedent has shown that, to-date, the collaborations most productive in producing astronomical science results (e.g, the Sloan Digital Sky Survey), have either involved astronomers expert in computer science and/or statistics, or astronomers involved in close, long-term collaborations with experts in those fields. This does not mean that the astronomers are giving the most important input, but simply that their input is crucial in guiding the effort in the most fruitful directions, and coping with the issues raised by real data. Thus, the tools must be useable and understandable by those whose primary expertise is not computing or statistics, even though they may have quite extensive knowledge of those fields.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)