Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Hierarchical and Topographic Dictionaries with Structured Sparsity (1110.4481v1)

Published 20 Oct 2011 in cs.LG

Abstract: Recent work in signal processing and statistics have focused on defining new regularization functions, which not only induce sparsity of the solution, but also take into account the structure of the problem. We present in this paper a class of convex penalties introduced in the machine learning community, which take the form of a sum of l_2 and l_infinity-norms over groups of variables. They extend the classical group-sparsity regularization in the sense that the groups possibly overlap, allowing more flexibility in the group design. We review efficient optimization methods to deal with the corresponding inverse problems, and their application to the problem of learning dictionaries of natural image patches: On the one hand, dictionary learning has indeed proven effective for various signal processing tasks. On the other hand, structured sparsity provides a natural framework for modeling dependencies between dictionary elements. We thus consider a structured sparse regularization to learn dictionaries embedded in a particular structure, for instance a tree or a two-dimensional grid. In the latter case, the results we obtain are similar to the dictionaries produced by topographic independent component analysis.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube