An Optimal Algorithm for Linear Bandits (1110.4322v3)
Abstract: We provide the first algorithm for online bandit linear optimization whose regret after T rounds is of order sqrt{Td ln N} on any finite class X of N actions in d dimensions, and of order d*sqrt{T} (up to log factors) when X is infinite. These bounds are not improvable in general. The basic idea utilizes tools from convex geometry to construct what is essentially an optimal exploration basis. We also present an application to a model of linear bandits with expert advice. Interestingly, these results show that bandit linear optimization with expert advice in d dimensions is no more difficult (in terms of the achievable regret) than the online d-armed bandit problem with expert advice (where EXP4 is optimal).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.