Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information, learning and falsification (1110.3592v2)

Published 17 Oct 2011 in cs.IT, cs.LG, math.IT, and stat.ML

Abstract: There are (at least) three approaches to quantifying information. The first, algorithmic information or Kolmogorov complexity, takes events as strings and, given a universal Turing machine, quantifies the information content of a string as the length of the shortest program producing it. The second, Shannon information, takes events as belonging to ensembles and quantifies the information resulting from observing the given event in terms of the number of alternate events that have been ruled out. The third, statistical learning theory, has introduced measures of capacity that control (in part) the expected risk of classifiers. These capacities quantify the expectations regarding future data that learning algorithms embed into classifiers. This note describes a new method of quantifying information, effective information, that links algorithmic information to Shannon information, and also links both to capacities arising in statistical learning theory. After introducing the measure, we show that it provides a non-universal analog of Kolmogorov complexity. We then apply it to derive basic capacities in statistical learning theory: empirical VC-entropy and empirical Rademacher complexity. A nice byproduct of our approach is an interpretation of the explanatory power of a learning algorithm in terms of the number of hypotheses it falsifies, counted in two different ways for the two capacities. We also discuss how effective information relates to information gain, Shannon and mutual information.

Citations (8)

Summary

We haven't generated a summary for this paper yet.