Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Joint variable and rank selection for parsimonious estimation of high-dimensional matrices (1110.3556v4)

Published 17 Oct 2011 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: We propose dimension reduction methods for sparse, high-dimensional multivariate response regression models. Both the number of responses and that of the predictors may exceed the sample size. Sometimes viewed as complementary, predictor selection and rank reduction are the most popular strategies for obtaining lower-dimensional approximations of the parameter matrix in such models. We show in this article that important gains in prediction accuracy can be obtained by considering them jointly. We motivate a new class of sparse multivariate regression models, in which the coefficient matrix has low rank and zero rows or can be well approximated by such a matrix. Next, we introduce estimators that are based on penalized least squares, with novel penalties that impose simultaneous row and rank restrictions on the coefficient matrix. We prove that these estimators indeed adapt to the unknown matrix sparsity and have fast rates of convergence. We support our theoretical results with an extensive simulation study and two data analyses.

Citations (110)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.