Rainbow connections for planar graphs and line graphs (1110.3147v2)
Abstract: An edge-colored graph $G$ is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph $G$, denoted by $rc(G)$, is the smallest number of colors that are needed in order to make $G$ rainbow connected. It was proved that computing $rc(G)$ is an NP-Hard problem, as well as that even deciding whether a graph has $rc(G)=2$ is NP-Complete. It is known that deciding whether a given edge-colored graph is rainbow connected is NP-Complete. We will prove that it is still NP-Complete even when the edge-colored graph is a planar bipartite graph. We also give upper bounds of the rainbow connection number of outerplanar graphs with small diameters. A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection number of a connected graph $G$, denoted by $rvc(G)$, is the smallest number of colors that are needed in order to make $G$ rainbow vertex-connected. It is known that deciding whether a given vertex-colored graph is rainbow vertex-connected is NP-Complete. We will prove that it is still NP-Complete even when the vertex-colored graph is a line graph.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.