Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Generalization Ability of Online Algorithms for Dependent Data (1110.2529v2)

Published 11 Oct 2011 in stat.ML, cs.LG, and math.OC

Abstract: We study the generalization performance of online learning algorithms trained on samples coming from a dependent source of data. We show that the generalization error of any stable online algorithm concentrates around its regret--an easily computable statistic of the online performance of the algorithm--when the underlying ergodic process is $\beta$- or $\phi$-mixing. We show high probability error bounds assuming the loss function is convex, and we also establish sharp convergence rates and deviation bounds for strongly convex losses and several linear prediction problems such as linear and logistic regression, least-squares SVM, and boosting on dependent data. In addition, our results have straightforward applications to stochastic optimization with dependent data, and our analysis requires only martingale convergence arguments; we need not rely on more powerful statistical tools such as empirical process theory.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube