Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph (1110.1360v1)

Published 6 Oct 2011 in cs.DS and cs.CC

Abstract: The densest k-subgraph (DkS) problem (i.e. find a size k subgraph with maximum number of edges), is one of the notorious problems in approximation algorithms. There is a significant gap between known upper and lower bounds for DkS: the current best algorithm gives an ~ O(n{1/4}) approximation, while even showing a small constant factor hardness requires significantly stronger assumptions than P != NP. In addition to interest in designing better algorithms, a number of recent results have exploited the conjectured hardness of densest k-subgraph and its variants. Thus, understanding the approximability of DkS is an important challenge. In this work, we give evidence for the hardness of approximating DkS within polynomial factors. Specifically, we expose the limitations of strong semidefinite programs from SDP hierarchies in solving densest k-subgraph. Our results include: * A lower bound of Omega(n{1/4}/log3 n) on the integrality gap for Omega(log n/log log n) rounds of the Sherali-Adams relaxation for DkS. This also holds for the relaxation obtained from Sherali-Adams with an added SDP constraint. Our gap instances are in fact Erdos-Renyi random graphs. * For every epsilon > 0, a lower bound of n{2/53-eps} on the integrality gap of n{Omega(eps)} rounds of the Lasserre SDP relaxation for DkS, and an n{Omega_eps(1)} gap for n{1-eps} rounds. Our construction proceeds via a reduction from random instances of a certain Max-CSP over large domains. In the absence of inapproximability results for DkS, our results show that even the most powerful SDPs are unable to beat a factor of n{Omega(1)}, and in fact even improving the best known n{1/4} factor is a barrier for current techniques.

Citations (113)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.