Papers
Topics
Authors
Recent
2000 character limit reached

Interval edge-colorings of cubic graphs (1110.1161v1)

Published 6 Oct 2011 in cs.DM and math.CO

Abstract: An edge-coloring of a multigraph G with colors 1,2,...,t is called an interval t-coloring if all colors are used, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. In this paper we prove that if G is a connected cubic multigraph (a connected cubic graph) that admits an interval t-coloring, then t\leq |V(G)| +1 (t\leq |V(G)|), where V(G) is the set of vertices of G. Moreover, if G is a connected cubic graph, G\neq K_{4}, and G has an interval t-coloring, then t\leq |V(G)| -1. We also show that these upper bounds are sharp. Finally, we prove that if G is a bipartite subcubic multigraph, then G has an interval edge-coloring with no more than four colors.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.