Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Adaptive Mesh Refinement for Astrophysics Applications with ParalleX (1110.1131v1)

Published 6 Oct 2011 in cs.DC

Abstract: Several applications in astrophysics require adequately resolving many physical and temporal scales which vary over several orders of magnitude. Adaptive mesh refinement techniques address this problem effectively but often result in constrained strong scaling performance. The ParalleX execution model is an experimental execution model that aims to expose new forms of program parallelism and eliminate any global barriers present in a scaling-impaired application such as adaptive mesh refinement. We present two astrophysics applications using the ParalleX execution model: a tabulated equation of state component for neutron star evolutions and a cosmology model evolution. Performance and strong scaling results from both simulations are presented. The tabulated equation of state data are distributed with transparent access over the nodes of the cluster. This allows seamless overlapping of computation with the latencies introduced by the remote access to the table. Because of the expected size increases to the equation of state table, this type of table partitioning for neutron star simulations is essential while the implementation is greatly simplified by ParalleX semantics.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.