Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distributed Algorithms for Consensus and Coordination in the Presence of Packet-Dropping Communication Links - Part II: Coefficients of Ergodicity Analysis Approach (1109.6392v1)

Published 29 Sep 2011 in cs.SY and math.OC

Abstract: In this two-part paper, we consider multicomponent systems in which each component can iteratively exchange information with other components in its neighborhood in order to compute, in a distributed fashion, the average of the components' initial values or some other quantity of interest (i.e., some function of these initial values). In particular, we study an iterative algorithm for computing the average of the initial values of the nodes. In this algorithm, each component maintains two sets of variables that are updated via two identical linear iterations. The average of the initial values of the nodes can be asymptotically computed by each node as the ratio of two of the variables it maintains. In the first part of this paper, we show how the update rules for the two sets of variables can be enhanced so that the algorithm becomes tolerant to communication links that may drop packets, independently among them and independently between different transmission times. In this second part, by rewriting the collective dynamics of both iterations, we show that the resulting system is mathematically equivalent to a finite inhomogenous Markov chain whose transition matrix takes one of finitely many values at each step. Then, by using e a coefficients of ergodicity approach, a method commonly used for convergence analysis of Markov chains, we prove convergence of the robustified consensus scheme. The analysis suggests that similar convergence should hold under more general conditions as well.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube