Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Regularity Measure for Context Free Grammars

Published 26 Sep 2011 in cs.FL, cs.CC, and cs.DS | (1109.5615v1)

Abstract: Parikh's theorem states that every Context Free Language (CFL) has the same Parikh image as that of a regular language. A finite state automaton accepting such a regular language is called a Parikh-equivalent automaton. In the worst case, the number of states in any non-deterministic Parikh-equivalent automaton is exponentially large in the size of the Context Free Grammar (CFG). We associate a regularity width d with a CFG that measures the closeness of the CFL with regular languages. The degree m of a CFG is one less than the maximum number of variable occurrences in the right hand side of any production. Given a CFG with n variables, we construct a Parikh-equivalent non-deterministic automaton whose number of states is upper bounded by a polynomial in $n (d{2d(m+1)}), the degree of the polynomial being a small fixed constant. Our procedure is constructive and runs in time polynomial in the size of the automaton. In the terminology of parameterized complexity, we prove that constructing a Parikh-equivalent automaton for a given CFG is Fixed Parameter Tractable (FPT) when the degree m and regularity width d are parameters. We also give an example from program verification domain where the degree and regularity are small compared to the size of the grammar.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.