Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Sensor Placement for Intruder Detection (1109.5466v1)

Published 26 Sep 2011 in cs.SY and math.OC

Abstract: We consider the centralized detection of an intruder, whose location is modeled as uniform across a specified set of points, using an optimally placed team of sensors. These sensors make conditionally independent observations. The local detectors at the sensors are also assumed to be identical, with detection probability $(P_{{D}})$ and false alarm probability $(P{{F}})$. We formulate the problem as an N-ary hypothesis testing problem, jointly optimizing the sensor placement and detection policies at the fusion center. We prove that uniform sensor placement is never strictly optimal when the number of sensors $(M)$ equals the number of placement points $(N)$. We prove that for $N{2} > N_{1} > M$, where $N_{1},N_{2}$ are number of placement points, the framework utilizing $M$ sensors and $N_{1}$ placement points has the same optimal placement structure as the one utilizing $M$ sensors and $N_{2}$ placement points. For $M\leq 5$ and for fixed $P_{{D}}$, increasing $P{{F}}$ leads to optimal placements that are higher in the majorization-based placement scale. Similarly for $M\leq 5$ and for fixed $P{{F}}$, increasing $P{_{D}}$ leads to optimal placements that are higher in the majorization-based placement scale. For $M>5$, this result does not necessarily hold and we provide a simple counterexample. It is conjectured that the set of optimal placements for a given $(M,N)$ can always be placed on a majorization-based placement scale.

Citations (2)

Summary

We haven't generated a summary for this paper yet.