Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Linear Parameter Estimation: Asymptotically Efficient Adaptive Strategies (1109.4960v2)

Published 22 Sep 2011 in math.OC, cs.SY, math.PR, math.ST, and stat.TH

Abstract: The paper considers the problem of distributed adaptive linear parameter estimation in multi-agent inference networks. Local sensing model information is only partially available at the agents and inter-agent communication is assumed to be unpredictable. The paper develops a generic mixed time-scale stochastic procedure consisting of simultaneous distributed learning and estimation, in which the agents adaptively assess their relative observation quality over time and fuse the innovations accordingly. Under rather weak assumptions on the statistical model and the inter-agent communication, it is shown that, by properly tuning the consensus potential with respect to the innovation potential, the asymptotic information rate loss incurred in the learning process may be made negligible. As such, it is shown that the agent estimates are asymptotically efficient, in that their asymptotic covariance coincides with that of a centralized estimator (the inverse of the centralized Fisher information rate for Gaussian systems) with perfect global model information and having access to all observations at all times. The proof techniques are mainly based on convergence arguments for non-Markovian mixed time scale stochastic approximation procedures. Several approximation results developed in the process are of independent interest.

Summary

We haven't generated a summary for this paper yet.