Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bisections of graphs (1109.3180v4)

Published 14 Sep 2011 in math.CO and cs.DM

Abstract: A bisection of a graph is a bipartition of its vertex set in which the number of vertices in the two parts differ by at most 1, and its size is the number of edges which go across the two parts. In this paper, motivated by several questions and conjectures of Bollob\'as and Scott, we study maximum bisections of graphs. First, we extend the classical Edwards bound on maximum cuts to bisections. A simple corollary of our result implies that every graph on $n$ vertices and $m$ edges with no isolated vertices, and maximum degree at most $n/3 + 1$, admits a bisection of size at least $m/2 + n/6$. Then using the tools that we developed to extend Edwards's bound, we prove a judicious bisection result which states that graphs with large minimum degree have a bisection in which both parts span relatively few edges. A special case of this general theorem answers a conjecture of Bollob\'as and Scott, and shows that every graph on $n$ vertices and $m$ edges of minimum degree at least 2 admits a bisection in which the number of edges in each part is at most $(1/3+o(1))m$. We also present several other results on bisections of graphs.

Citations (50)

Summary

We haven't generated a summary for this paper yet.