Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

mGPT: A Probabilistic Planner Based on Heuristic Search (1109.2153v1)

Published 9 Sep 2011 in cs.AI

Abstract: We describe the version of the GPT planner used in the probabilistic track of the 4th International Planning Competition (IPC-4). This version, called mGPT, solves Markov Decision Processes specified in the PPDDL language by extracting and using different classes of lower bounds along with various heuristic-search algorithms. The lower bounds are extracted from deterministic relaxations where the alternative probabilistic effects of an action are mapped into different, independent, deterministic actions. The heuristic-search algorithms use these lower bounds for focusing the updates and delivering a consistent value function over all states reachable from the initial state and the greedy policy.

Citations (108)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)