Papers
Topics
Authors
Recent
2000 character limit reached

Gradient-based kernel dimension reduction for supervised learning (1109.0455v1)

Published 2 Sep 2011 in stat.ML and cs.LG

Abstract: This paper proposes a novel kernel approach to linear dimension reduction for supervised learning. The purpose of the dimension reduction is to find directions in the input space to explain the output as effectively as possible. The proposed method uses an estimator for the gradient of regression function, based on the covariance operators on reproducing kernel Hilbert spaces. In comparison with other existing methods, the proposed one has wide applicability without strong assumptions on the distributions or the type of variables, and uses computationally simple eigendecomposition. Experimental results show that the proposed method successfully finds the effective directions with efficient computation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.