Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis (1108.6296v2)

Published 31 Aug 2011 in cs.LG and cs.NA

Abstract: Tensor decomposition is a powerful computational tool for multiway data analysis. Many popular tensor decomposition approaches---such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)---amount to multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g. missing data and binary data), and (iii) noisy observations and outliers. To address these issues, we propose tensor-variate latent nonparametric Bayesian models, coupled with efficient inference methods, for multiway data analysis. We name these models InfTucker. Using these InfTucker, we conduct Tucker decomposition in an infinite feature space. Unlike classical tensor decomposition models, our new approaches handle both continuous and binary data in a probabilistic framework. Unlike previous Bayesian models on matrices and tensors, our models are based on latent Gaussian or $t$ processes with nonlinear covariance functions. To efficiently learn the InfTucker from data, we develop a variational inference technique on tensors. Compared with classical implementation, the new technique reduces both time and space complexities by several orders of magnitude. Our experimental results on chemometrics and social network datasets demonstrate that our new models achieved significantly higher prediction accuracy than the most state-of-art tensor decomposition

Citations (130)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)