Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Probability Ranking in Vector Spaces (1108.5784v1)

Published 30 Aug 2011 in cs.IR and cs.LG

Abstract: The Probability Ranking Principle states that the document set with the highest values of probability of relevance optimizes information retrieval effectiveness given the probabilities are estimated as accurately as possible. The key point of the principle is the separation of the document set into two subsets with a given level of fallout and with the highest recall. The paper introduces the separation between two vector subspaces and shows that the separation yields a more effective performance than the optimal separation into subsets with the same available evidence, the performance being measured with recall and fallout. The result is proved mathematically and exemplified experimentally.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.