Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Getting Beyond the State of the Art of Information Retrieval with Quantum Theory (1108.5575v1)

Published 29 Aug 2011 in cs.IR, cs.LG, and physics.data-an

Abstract: According to the probability ranking principle, the document set with the highest values of probability of relevance optimizes information retrieval effectiveness given the probabilities are estimated as accurately as possible. The key point of this principle is the separation of the document set into two subsets with a given level of fallout and with the highest recall. If subsets of set measures are replaced by subspaces and space measures, we obtain an alternative theory stemming from Quantum Theory. That theory is named after vector probability because vectors represent event like sets do in classical probability. The paper shows that the separation into vector subspaces is more effective than the separation into subsets with the same available evidence. The result is proved mathematically and verified experimentally. In general, the paper suggests that quantum theory is not only a source of rhetoric inspiration, but is a sufficient condition to improve retrieval effectiveness in a principled way.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)