Emergent Mind

Robustness of a Tree-like Network of Interdependent Networks

(1108.5515)
Published Aug 29, 2011 in physics.data-an , cs.SI , and physics.soc-ph

Abstract

In reality, many real-world networks interact with and depend on other networks. We develop an analytical framework for studying interacting networks and present an exact percolation law for a network of $n$ interdependent networks (NON). We present a general framework to study the dynamics of the cascading failures process at each step caused by an initial failure occurring in the NON system. We study and compare both $n$ coupled Erd\H{o}s-R\'{e}nyi (ER) graphs and $n$ coupled random regular (RR) graphs. We found recently [Gao et. al. arXive:1010.5829] that for an NON composed of $n$ ER networks each of average degree $k$, the giant component, $P{\infty}$, is given by $P{\infty}=p[1-\exp(-kP{\infty})]n$ where $1-p$ is the initial fraction of removed nodes. Our general result coincides for $n=1$ with the known Erd\H{o}s-R\'{e}nyi second-order phase transition at a threshold, $p=pc$, for a single network. For $n=2$ the general result for $P{\infty}$ corresponds to the $n=2$ result [Buldyrev et. al., Nature, 464, (2010)]. Similar to the ER NON, for $n=1$ the percolation transition at $pc$, is of second order while for any $n>1$ it is of first order. The first order percolation transition in both ER and RR (for $n>1$) is accompanied by cascading failures between the networks due to their interdependencies. However, we find that the robustness of $n$ coupled RR networks of degree $k$ is dramatically higher compared to the $n$ coupled ER networks of average degree $k$. While for ER NON there exists a critical minimum average degree $k=k{\min}$, that increases with $n$, below which the system collapses, there is no such analogous $k{\min}$ for RR NON system.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.